Microbiological (CFU) measurements - in theory and practice

Human IC:

Temperature Controlled Airflow CFU measurements

July 4, 2025 Henrik Skredsvik

Let me introduce myself briefly

- Henrik Skredsvik
- Architect
- Accidentely slipped into ventilation for OR:s 16 years ago
- Principal Architect at Avidicare
- Work with system design, R&D and measurements

Topics Covered Today

Measuring Colony Forming Units (CFU)

- -Why
- -Where
- -How

Why measure bioburden (CFU)?

Technical check of installations

Establish hygiene level (SSI)

Control compliance to a standard

Infection tracing

Surgical Site Infections (SSIs)

- Surgical site infections (SSIs) are a major global issue, causing significant suffering, fatalities, and skyrocketing healthcare costs.
- A single infection can cost anywhere between \$10,000 and \$100,000 per case.
- Despite preventive measures like sterile protocols, prophylactic antibiotics, and ventilation, 2–10% of surgeries still result in infection depending on geography.
- The world's best hospitals achieve infection rates below 1%, proving there is massive potential for improvement.

What is bioburden?

- Bacteria
- Fungi (spores)

What is a Colony Forming Unit?

A colony-forming unit (CFU) is a unit of measurement used in microbiology to estimate the number of viable bacteria or fungal cells in a sample. It represents the number of individual cells or groups of cells that can divide and multiply to form a visible colony on a <u>culture medium</u>.

Where do the CFUs come from?

 Bacteria come mainly from people when in a protected environment. We shed skin scales and aerosols from nose and mouth.

• Fungi (spores) are generally considered a building problem but can enter, for example, via cardboard boxes and people.

Where can CFU measurements be useful?

Clean rooms (pharmaceutical)

Food industry (processing and packaging)

Hospitals

Hospitals

Operating rooms

Instrument preparation rooms

Hybrid rooms

Sterile processing departements

Ways to measure CFU

Passive sampling

Active sampling

Contact sampling

Passive sampling

Settling plates placed in relevant places exposed for a specified amount of time.

Gives a CFU/h value per area unit

CFU per volume unit can be calculated assuming a sedimentation rate (0.3m/min skin scales)

Should not be used in rooms with high airflows

Passive sampling

AVIDICARE

Active sampling

Agar plates or filters placed in an air extracting device running for a specified amount of time with a specified airflow (1m³/10min)

Gives a CFU value per volume unit (m³)

Real time trackers (Biotrak)

Active sampling

Slit sampler Sieve Sampler

Sartorius

Slit sampler

Draws air at a controlled flow (e.g., 100 L/min) through a narrow **slit**, impacting particles directly onto a rotating agar plate (0.1rpm)

Can be fitted with a sterile silicon hose to reach the wound area

Sieve sampler

Draws air at a controlled flow rate through a perforated **sieve**, impacting particles directly onto a static agar plate.

Can't be fitted with a hose, hard to reach the wound area

Sartorius sampler

Draws air at a controlled flow rate through a gelatine filter. This filter must then be moved with sterile tweezers to an agar plate in order to be incubated.

Doesn't need a hose to reach the wound area. Needs attending by "scrub" nurse

Real time (Biotrak)

Draws air at a controlled flow rate through a flourecent light. Counts number of viable particles probably by measuring reflection level.

Purpose is constant monitoring, not CFU measurements.

Gives high readings compared to agar plates Expensive

Avoid samplers that expose the plates for fast moving air longer than 10 min

The air can dehydrate bacteria and media which may result in a false low reading.

Contact sampling

Special type of agar plate

Diameter 40-60mm

CFU per sample (or per cm²)

Surfaces, air ducts, Air Handling Units

Airshowers

- The Opragon Airshower is a unique supply air diffuser
- It has low turbulence degree ("laminar") and a half-spheric distribution shape
- The distribution pattern
 expands the area of air which
 lower velocity to allow gravity
 to take over

Agar plates

Many types of growth medium

Most common blood agar and soy agar (soy can be sterilized)

Different sizes 70mm to 140mm

Incubation

Normally 48 to 72 hours in 35-37°C

There are other temperatures and times depending on type of agar and what species of bacteria/fungi you are looking for

Counting CFU

If many, use pin or a paperclip to mark the ones counted

Take a picture of each plate Number visible (optional)

To determine species let a biolab incubate and count

AVIDICARE

Useful knowledge

- Number each plate (water proof pen) Not the lid!
- Transport, store and incubate plates upside down
- When exposing, don't place lid upside down
- Only touch outside of plate and lid
- Let the plates reach room temp before measuring
- After exposure secure lid with sticky tape
- Start incubation a.s.a.p.(keep at room temp until)

Measuring CFU in an OR (SIS-TS39:2015)

- Active sampling during live surgery (1m³/10min)
- <50cm from wound (about 1.2m above floor level)
 a sterile hose may be needed, on the instrument table
 or in the periphery
- 50 min or more of "knife time" is prefered
- Have a protocol ready to note time, plate no, number of people, door openings etc
- Take note of how the team is dressed
- Save one unexposed agar plate as negative control

Mätning Hybridsal, Operation (stent, bukaorta)

Antal	Personal	Special- arbetsdräkt	Bomulls- klädsel	Hjälm	Mössa	Sterilrock	Munskydd	Handskar	
4	Operationsteam	4		4		4	4	4	
4	Övriga	4		4			4		

Händelseförlopp:

Händelse	Dörr öppnas	KI	Antal	Platta nr:	Mät- punkt	CFU/m3	CFU platta
Ingreppet startar, DÖ 9:19 och 9:24	2	9:17	pers. 8-9	1	1	3	3
д. оррогозими, до отмосительной	0	9:17		2	2	6	6
	0	9:27	8	3	1	1	1
	0	9:27		4	2	4	4
	0	9:37	8	5	1	<1	0
	0	9:37		6	2	3	3
	0	9:47	8	7	1	<1	0
	0	9:47		8	2	4	4
DÖ 9:53 -1 och 10:06 +1	2	9:57	7-8	9	1	<1	0
	0	9:57		10	2	5	5
DÖ 10:12 -1	1	10:08	8	11	1	<1	0
	0	10:08		12	2	1	1
Kontroll-agar				0		n/a	0

Make a simple sketch of the room

Room layout

Measuring points

Position of people

Position of instrument tables

Making a Report

- Info about the customer (hospital, contacts etc)
- Who performed the measurements and when
- Equipment used (calibration dates if required)
- Description of how measurements were done
- Which OR and what kind of procedure
- Table with raw data
- Simple sketch of room layout
- Summary and conclusion (often appreciated)

Why we measure CFU in the OR

Purpose of CFU Measurement

- Assess microbiological air cleanliness to protect against SSIs (Surgical Site Infections)
- Validate ventilation performance
- Provide trend data for quality monitoring

Regulatory Context

- EN 17141: Defines sampling methods and limit values for CFU/m³
- Healthcare ORs often align with ISO 5/EN Grade B (≤10 CFU/m³ at rest)
 Swedish TS39
- Supplementary references: ISO 14644, local HTM/HBN or DIN standards

Useful knowledge (beeing in an OR)

- Patient and patient safety is priority number ONE
- Communicate with staff and get OK for your actions
- Ask where you can position equipment and yourself
- Stay out of sterile field, keep hands behind back
- Don't bump into staff, instrument tables etc. With one accidental touch hours of preparation can be ruined
- Between plate changes stay close to an exhaust grill
- Don't leave the OR or open doors without permission

Take aways from my personal experience

- Don't do your first measurements on your own
- A good mentor is important
- Attending surgery can be challenging
- Talking to staff and asking for help can be hard (they are focused on surgery)

Further reading

- EN 17141: Defines sampling methods and limit values for CFU/m³
- Swedish TS39
- ISO 14644
- HTM/HBN
- DIN standards

