

Microbiology and Infection Transmission:

microbiology, pathways of infection transmission in hospitals, established and emerging pathogens

HumanIC CBT1

26th Feb 2025

Dr Waseem Hiwar

Funded b

the European Union

HumanIC project has received funding from the European Union's Horizon Europe research and innovation program under the Marie Sklodowska-Curie (HORIZON-MSCA-2022-DN-01, project no 101119726

Dr Waseem Hiwar

iadi et al (2016 oseini et al (20 0.20; 0.24] Yang et al (2014) Park et al (2013) 04 [-0 18: 0 26 dom effects mode properties: $l^2 = 59\%$, $\tau^2 = 0.0331$, $\rho = 0.0$ Sajjadi et al(2016 Yang et al (2014 Azimi et al (2013 0.12 [-0.10: 0.34] 0.84; 0.64] 0 12 1-0 77 0 53 vska and [0.05 [-0.13: 0.22] andom effects model 154 aterogeneity: $l^2 = 3\%$, $\tau^2 = 0.0012$, p = 0.39Hiwar et al. (2021), Indoor Air, 31(5), 1308-1322.

Hiwar et al. (2022), *Indoor Air, 32(11),* e13161.

Hiwar et al. (2025), COBEE 2025, Eindhoven.

Eadie et al. (2022), *Scientific Reports, 12(1),* 4373. Hiwar et al. (2025), Building and Environment, 112734.

The PROTECT COVID-19 National Core Study on Transmission and Environment

Transport Risk Assessment for COVID Knowledge" (TRACK)

HumanIC project has received funding from the European Union's Horizon Europe research and innovation program under the Marie Sklodowska-Curie (HORIZON-MSCA-2022-DN-01, project no 101119726

Funded by the European Union

Session Objectives

- To understand the role of **microbiology** in hospital environments.
- To identify key pathways of **pathogen transmission** in healthcare settings.
- To explore established and emerging pathogens in hospitals.
- To examine infection control strategies

the European Unior

HumanIC project has received funding from the European Union's Horizon Europe research and innovation program under the Marie Sklodowska-Curie (HORIZON-MSCA-2022-DN-01, project no 101119726

Obj.1/Type of Microorganisms

Bacteria are single-celled prokaryotic microorganisms found in all environments. Bacteria come in various shapes, including cocci (spherical), bacilli (rod-shaped), and spirilla (spiral-shaped), typically ranging from **0.1 to 10 µm** in size.

Bacterial Group	Main Pathogen	Primary Infections	Common Sources in Hospitals	
Gram-Positive Bacteria	Staphylococcus aureus (MRSA)	Bloodstream infections, pneumonia, surgical site infections	Contaminated hands , medical devices, catheters	
	Clostridioides difficile	Severe diarrhea, colitis	Contaminated hospital surfaces , fecal-oral transmission	
	Enterococcus spp. (VRE)	UTIs, bloodstream infections, endocarditis	Catheters, contaminated surfaces , healthcare workers' hands	
	Escherichia coli (ESBL- producing E. coli)	UTIs, bloodstream infections, sepsis	Urinary catheters, poor hygiene	
Gram-Negative Bacteria	Klebsiella pneumoniae (CRE)	Pneumonia, bloodstream infections, UTIs	Hospital water sources, IV catheters	
	Pseudomonas aeruginosa	Ventilator-associated pneumonia (VAP), wound infections, sepsis	Biofilms in medical equipment, humidifiers, water systems	
Mycobacteria	Mycobacterium tuberculosis (TB)	Pulmonary TB, disseminated TB	Airborne droplets, infected patients, poor ventilation	

Type of Microorganisms

Fungi are eukaryotic organisms and exist in diverse environments. While most fungi are harmless or beneficial, a few cause human diseases, particularly skin infections. They typically range in size from **2 to 10 µm** and reproduce through spores or budding.

Fungal Group	Main Pathogen	Major Disease	High-Risk Patients	Common Sources in Hospitals
Moulds (Multicellular Filamentous)	Aspergillus spp.	Pulmonary/Invasive Aspergillosis	Immunocompromised (Cancer, HIV, Transplant)	Ventilation systems, damp walls, air ducts
Macroscopic Filamentous Fungi <i>(Zygomycetes)</i>		Mucormycosis (sinuses, lungs, skin)	Diabetics, transplant recipients, ICU patients	Dust, humid hospital areas
Yeasts (Single- Celled) Candida spp.		Candidemia, Thrush, UTI, Invasive Candidiasis	ICU patients, catheter users, antibiotic-treated patients	IV catheters, urinary catheters, ventilators , healthcare workers' hands

Type of Microorganisms

Viruses require a host cell to replicate. They consist of genetic material (DNA or RNA) enclosed in a protein coat (capsid), sometimes with a lipid envelope. They are much smaller than bacteria, typically ranging from **5 to 300 µm** in size.

Viral Group	Main Pathogen	Primary Infections	Common Sources in Hospitals	
	Influenza virus	Respiratory infections, pneumonia	Airborne droplets, contaminated surfaces, close contact	
RNA Viruses	SARS-CoV-2 (COVID-19)	Severe respiratory illness, pneumonia, multi-organ complications	Airborne droplets, close contact, contaminated surfaces	
	Norovirus	Gastroenteritis, severe diarrhea	Contaminated food, surfaces, person-to-person	
DNA Viruses	Herpes simplex virus (HSV-1, HSV-2)	Neonatal herpes, encephalitis	Direct contact, contaminated medical equipment	
	Hepatitis B Virus (HBV)	Chronic liver disease, hepatocellular carcinoma	Bloodborne transmission, needlestick injuries, contaminated medical tools	

Obj. 2/Pathogen Transmission Routes

Mode of Transmission	Typical Distance from Source	Route of Transfer to Another Human	Respiratory Tract Entry Mechanism	Respiratory Tract Entry Por	
Airborne Transmission /Inhalation	Any distance	Through the air (suspended or moving via airflow)	Inhalation	Anywhere along respiratory tract	• 🚠
Direct Deposition	Short	Through the air (semi- ballistic trajectory)	Deposition on mucosa	Mouth, nose, or eyes	
Direct Contact	Short	Not through the air	Direct transfer (via touch)	Mouth, nose, or eyes	
Indirect Contact	Any distance	Not through the air (via intermediate object)	Indirect transfer (via contaminated object)	Mouth, nose, or eyes	

Infection Transmission Routes

	Mode of Transmission	Typical Distance	Route of Transfer	Entry Mechanism	Entry Portal	Common Examples
	Airborne Transmission/In halation	Any distance	Through the air (suspended in aerosols or moving via airflow)	Inhalation	Anywhere along respiratory tract	Tuberculosis, Measles, COVID-19 (Airborne route)
	Droplet Transmission Short Transmission Droplet Short Through the air (large droplets expelled by coughing, sneezing, or talking)		Deposition on mucosa	Mouth, nose, or eyes	Influenza, Pertussis, COVID-19 (Droplet route)	
Direct Contact Short Not to		Short	Not through the air, direct skin- to-skin or mucosal contact	Direct transfer (via touch)	Mouth, nose, or skin	MRSA, Scabies, Clostridioides difficile (hand-to-hand contact)
	Indirect Contact Any distance Contact Any distance Contact Any distance Contact Any distance Contaminated surfaces o		Not through the air, but via contaminated surfaces or objects	Indirect transfer (via contaminated object)	Mouth, nose, or eyes	Fomites, Contaminated medical devices, Norovirus outbreaks
Fecal-Oral TransmissionVariableIngVector-Borne TransmissionVariableV		Variable	Ingestion of contaminated food, water, or hands touching infected feces	Ingestion	Gastrointestinal tract	Hepatitis A, Cholera, Rotavirus, Giardia
		Variable	Via insect or animal bite from infected vectors (mosquitoes, ticks)	Vector-mediated inoculation (bite or penetration)	Skin, bloodstream	Malaria, Dengue, Lyme disease, West Nile virus

Fig 4. WHO Bacterial Priority Pathogens List, 2024

Funded by

the European Union

WHO (2024), Bacterial Priority Pathogens List.

Summary of Epidemiological Information on Proposed Priority Pathogens

Family	Pathogen	Vector/Reservoir	Mode of Transmission	nt of Person-to-Person Transmis	Spread
Arenaviridae	Mammarenavirus lassaense	Mastomys rodents	Contact with infected rodents, person-to-person	Sufficient to cause outbreaks	Africa
Bacteria	Vibrio Cholerae (sero 01)	Aquatic environment, human hosts	Fecal-oral transmission, contaminated water sources	Some	South Asia
Bacteria	Klebsiella Pneumoniae	Humans, environmental reservoirs	Nosocomial transmission, person-to-person spread	Some	Reported worldwide
Bacteria	Yersinia Pestis (Plague)	Rodents, fleas	Flea-borne transmission, person-to-person spread	Some	Asia, Africa, Americas
Bacteria	Shigella Dysenteriae 1	Humans	Fecal-oral transmission, contaminated food/water	Sufficient to cause outbreaks	Primarily in developing countries, potential for global spre
Bacteria	Salmonella Enterica (various non-typhoidal)	Animals, environment, humans	Food-borne transmission, person-to-person spread	Sufficient to cause outbreaks	Reported worldwide
Hantaviridae	Orthohantavirus Sin Nombre	Deer mice	Inhalation of virus from rodent excreta	Little or none	Primarily confined to endemic regions in Asia
Hantaviridae	Orthohantavirus Seoul	Rats	Inhalation of virus from rodent excreta	Little or none	Primarily confined to North America
Hantaviridae	Orthohantavirus Dobrava	Ticks, rodents	Tick-borne transmission, contact with infected animals	Some	Primarily confined to endemic regions in Asia, Europe
Phenuiviridae	Bandavirus dabieense	Ticks, small mammals	Tick-borne transmission, contact with infected rodents	Some	Outbreaks in parts of Asia
Coronaviridae	Sub genus Sarbecovirus	Bats, humans	Respiratory transmission	Sufficient to cause outbreaks	Global, already caused a PHEIC
Coronaviridae	Sub genus Sarbecovirus	Bats, humans	Respiratory transmission	Sufficient to cause outbreaks	Global
Flaviviridae	Orthoflavivirus usutuvirus	Mosquitoes	Mosquito-borne transmission	Little or none	In parts of Africa and South America
Filoviridae	Orthomarburgvirus marburgense	Fruit bats, potential animal reservoir	Contact with infected bodily fluids	Sufficient to cause outbreaks	Primarily in Central and East Africa
Filoviridae	Orthobolavirus zaireense	Fruit bats, potential animal reservoir	Contact with infected bodily fluids	Sufficient to cause outbreaks	Primarily in Central and East Africa
Flaviviridae	Orthoflavivirus flavivirus	Mosquitoes, non-human primates	Mosquito-borne transmission	Little or none	Widespread in tropical and subtropical regions
Flaviviridae	Orthoflavivirus dengue1	Mosquitoes	Mosquito-borne transmission	Little or none	Outbreaks in the Americas, Africa, Asia, and the Pacific
Flaviviridae	Orthoflavivirus zikaense	Aedes mosquitoes	Mosquito-borne, potential for vertical and sexual transmission	Some	Outbreaks in parts of Asia, Africa, Europe
Orthomyxoviridae	Alphainfluenzavirus influenza H5, H7, H9, H10	Avian reservoirs, humans	Respiratory transmission, potential for zoonotic	Little or none	Outbreaks in parts of Asia and Europe
Orthomyxoviridae	Alphainfluenzavirus influenza H5, H7, H9, H10	Avian reservoirs, humans	Respiratory transmission, potential for zoonotic	Little or none	Worldwide distribution
Orthomyxoviridae	Alphainfluenzavirus influenza H1, H3	Respiratory transmission, potential for zoonotic	Respiratory transmission	Sufficient to cause outbreaks	Outbreaks in parts of Asia
Orthomyxoviridae	Henipavirus Nipah	Bats, humans	Bat-borne transmission, person-to-person spread	Sufficient to cause outbreaks	Primarily confined to Afghanistan and Pakistan
Paramyxoviridae	Enterovirus poliovirus	Humans	Fecal-oral transmission, contaminated food and water	Sufficient to cause outbreaks	Historically widespread, now confined to laboratories
Picornaviridae	Orthopoxvirus Variola	Humans	Contact with infected individuals	Sufficient to cause outbreaks	Endemic in Central and West Africa, already caused a PHE
Poxviridae	Lentivirus human6	Endemic in humans	Sexual transmission, endemic in humans	Endemic in humans	Global
Retroviridae	Alphavirus equine encephalitis	Mosquitoes, rodents	Mosquito-borne transmission	Little or none	Outbreaks in Asia, Africa, and the Americas
Togaviridae	Alphavirus Venezuelan	Mosquitoes, rodents	Mosquito-borne transmission	Little or none	Outbreaks in Central and South America

WHO (2024), Pathogens Prioritization: A Scientific Framework for Epidemic and Pandemic Research Preparedness.

Exercise 1:

Most Effective Infection Control Strategy

G1 - Ventilation

G2 - UV disinfection

G3 - HEPA filters

- Each group must argue why their assigned strategy is the most effective (10 minutes).
- Other groups can challenge their claims (10 minutes).

he European Unior

infection control strategies

How to minimise the transmission of airborne pathogens?

Funded by the European Union

Ventilation

Ventilation is the process of introducing ۲ and circulating clean air into indoor spaces to dilute and displace polluted air, using mechanical and natural ventilation.

Figure 1: Airborne pathogen mitigations

Morawska, Lidia, et al. "How can airborne transmission of COVID-19 indoors be minimised?." Environment international 142 (2020).

Type of Ventilation

Natural ventilation:

Operable windows, vents, and other openings to allow air exchange driven by natural wind and temperature differences.

Mechanical ventilation:

Like Heating, Ventilation and Air Conditioning (HVAC) to control indoor air quality by regulating airflow rates and filtration.

Hybrid systems:

Combines elements of both natural and mechanical systems to optimize energy efficiency while maintaining air quality.

The impact of ventilation rate on reducing the microorganisms load in the air and on surfaces in a room-sized chamber

FIGURE 8: Airborne bioaerosol load under steady-state conditions at 3 and 6 ACH ventilation rates and at two locations (ventilation supply and extract) in the chamber.

FIGURE 9: The mean deposited microorganisms load under the steady state conditions at 3 and 6 ACH ventilation rates sampled near the ventilation inlet and the outlet.

⇔ ☆

Ultraviolet Disinfection

https://2008.igem.org/Team:Bologna/UV_radiation/

Ultraviolet Disinfection

*** * * * * * *

Ultraviolet Disinfection

UV-C radiation (254nm) is absorbed by the DNA and is the most likely of the three to cause skin cancer

History of UVGI

1930's and 40's - UV lamps used extensively in Tuberculosis (TB) wards in the USA

Numerous anecdotal accounts of the benefits of UVGI in these wards

Wells et al – Harvard University – 4 year study – UV in schools - reduced the spread of measles and chickenpox and mumps

Riley – carried on the work – looking at the control of TB

Since Riley's work there had been little work done on UV

- Reduction in TB cases due to improved drug therapies
- Difficulty in demonstrating a real health effect
- Concerns over the safety of UVGI

Renewed Interest in Ultraviolet disinfection

- Increased incidence of TB
- Recognition that existing engineering controls have serious deficiencies

As a result:

• Ultraviolet germicidal irradiation is now a recognised method for inactivating a wide range of biological agents

The efficacy will depend upon a range of locational and operational factors

- UV Light intensity
- Susceptibility of microorganism
- Passage of air through UV field

UV Disinfection Strategies

′ ‡ ☆

Susceptibility of microorganism

scientific reports

OPEN Far-UVC (222 nm) efficiently inactivates an airborne pathogen in a room-sized chamber

Ewan Eadie^{1⊠}, Waseem Hiwar², Louise Fletcher², Emma Tidswell², Paul O'Mahoney^{1,3}, Manuela Buonanno⁴, David Welch⁴, Catherine S. Adamson⁵, David J. Brenner⁴, Catherine Noakes² & Kenneth Wood⁶

- 100-280 nm (UV-C radiation)
- 250-280 nm (UVGI) at germicidal doses is potentially hazardous, biophysical
- 200-230 nm Far UV-C radiation

- Nucleic acids and proteins absorb photons, making wavelengths below 230 nm efficient for deactivation.
- Airborne viral infections are commonly bound in aerosol droplets, which have high protein absorption.

https://www.wsws.org/en/articles/2023/01/14/teda-j14.html

https://phys.org/news/2021-10-specific-uv-wavelength-low-cost-safe.html

- Far-UV typically in the wavelength range from 200 to 230 nm
- Krypton Chloride (KrCl) excimer lamps with a primary emission wavelength of **222 nm**, and low residual emission throughout the ultraviolet region of the electromagnetic spectrum
- Have been shown in **laboratory experiments to inactivate** gram-positive and gram-negative bacteria, drug-resistant bacteria, infuenza viruses and human coronaviruses including the SARS-CoV-2 virus
- Far-UVC excimer lamps are much less likely than conventional (254 nm) germicidal UV sources to induce acute adverse reactions on skin and eyes, and studies to date in animal and human models have not demonstrated any long-term adverse health effects

HEPA filter unit

Figure 1 The performance of the air cleaning device at different fan speeds with bioaerosols of *A. fumigatus* – the blue lines represents the raw data from the ten replicate samples and the red lines are the mean concentrations over the ten replicate samples.

Building and Environment

Volume 274, 15 April 2025, 112734

<u>Waseem Hiwar ^a A ⊠</u>, <u>Catherine S Adamson ^b</u>, <u>David J Brenner ^c</u>, <u>Louise A Fletcher ^a, <u>Marco-Felipe King ^a</u>, <u>James B. McQuaid ^d, <u>Emma Tidswell ^a</u>, <u>Catherine J Noakes ^a</u>, <u>Kenneth Wood ^e</u>, <u>Ewan Eadie ^f</u></u></u>

Exercise 1:

The data was obtained from controlled experiments carried out in the Leeds test chamber using *Staphylococcus aureus* over 4 days. For each experiment ten replicate samples were taken with the device switched off (control samples) and with the device switched on (test samples) and all the data is in cfu/m3. There was no sampling for the first hour, then, 10 samples were taken when the device is off, 10 samples when the device is on (at a ventilation rate of 1.5, 3, 6 and 9 ACH).

Reactive Air Purification Technology

• Negative Air Ionisation

Ionisers in use in a UK Hospital

Effect of negative ions on the airborne concentration of *Staphylococcus aureus*

Effect of negative ions on the airborne concentration of *Bacillus subtilis* spores

Reactive Air Purification Technology

• Ozone

- An allotrope of oxygen with **three oxygen atoms**
- Unstable because the gas will readily degrade back to its stable state, diatomic oxygen
- In air it has a **pungent odour** that is noticeable to most persons at levels above 100 ppb
- Because it is a strong oxidant, extended exposure to ozone containing air is **harmful (**hazardous pollutant)
- Can be generated by **photochemical**, **electrolytic** and **radiochemical methods**
- Ozone is known to have **antibacterial activity**
- Background levels are usually around **20 30 ppb**

Reactive Air Purification Technology

Hydroxyl Radicals

Discovered through work looking at the natural disinfection capacity of the open air – The Open-Air Factor

Patients with TB were often treated using 'fresh air and sunshine'

Evaluating the efficacy of air treatment devices

Controlled Environment Testing

Steady state test

- Room is subject to a continuous source of contamination
- Replicate samples are taken with the device switched off and again with the device switched on
- The difference between the two data sets is the reduction due to the device

Decay test

- Short term contamination event
- Samples are taken an set time intervals after contamination ceases with no device operating
- Test is repeated with the device switched on
- The difference in decay rate with and without the device operating indicates the efficacy of the device

Real Environment Testing

Testing devices in real environments has advantages and disadvantages.

- It can be better to test in real environments such as hospitals etc. so you can investigate the influence of environmental conditions such as temperature, relative humidity, ventilation rate and the concentration of microorganisms which will vary over time.
- It also allows you to look at other factors such as the 'usability' of the device.
 - Does the device produce too much **noise**?
 - Does the device create a **draft**?
 - Does the device create a **smell**?
 - Do the device **get in the way**?
- If you are evaluating the performance of a device intended to be used in a hospital, by doing a full clinical trial you can also determine if the device produces a **reduction in infections** rather than just a **reduction in the level of contamination**.
- The big disadvantage to real environment trials is the cost and also the fact that they are uncontrolled so it can be difficult to explain differences in performance fi comparing different devices.

